

Proportionality Relationships

IS THERE AN

WAY?

WARNING!! THIS ONLY WORKS ON THE SIDES GUT BY THE PARALLEL LINE.

Parallel Proportionality

If a line parallel to one side of a ______passes through the other two sides, then it divides them

Conversely, if a line cuts two sides of a triangle proportionally, then it is to the third side.

Proof of the Parallel Proportionality Theorem

Practice

1) x =_____

Practice

00557115V/02K 502 MORETHAN ONE PARALLEL LINE INA TRIANGLES

Practice

Extended Parallel

If two or more lines are ______to the third side of a triangle, then they divide the two other sides proportionally.

Review <u>Median</u>

Angle Bisectors

Proportional Parts Theorem W

If two triangles are similar, besides their sides, their corresponding _____, angle bisectors, and _____ are also proportional

<u>Part Divided by an Angle</u> <u>Bisector Theorem</u>

The angle ____ in a triangle divides the opposite side into two segments whose lengths are in the same ratio as the lengths of the two sides forming the angle

